View Poll Results: Mercedes-Benz SLR Mclaren vs Ford GT

Voters
138. You may not vote on this poll
  • Mercedes-Benz SLR Mclaren

    68 49.28%
  • Ford GT

    70 50.72%
Results 1 to 15 of 112

Thread: Mercedes-Benz SLR Mclaren vs Ford GT

Threaded View

Previous Post Previous Post   Next Post Next Post
  1. #1
    Join Date
    Sep 2004
    Location
    Euroland
    Posts
    5,856

    Mercedes-Benz SLR Mclaren vs Ford GT

    Well, i've seen this comparative on a site, and so im doing it here...
    Some info.

    Mercedes-Benz SLR Mclaren:

    The Mercedes-Benz SLR McLaren revives the glorious tradition of the SLR and marks the reawakening of Mercedes-Benz' passion for super sports cars. It is a passion which can be traced way back through automotive history and which was demon-strated with the Uhlenhaut Coupe. A contemporary interpretation of stylistic elements lifted from the original SLR and design details taken from the 2003 Formula 1 Silver Arrows allow the 21st-century SLR to form a bridge between the past and the future, bringing cutting-edge motorsport technology to the road, just as the inspirational SLR Coupe did in 1955.

    The new super sports car allows Mercedes-Benz and its Formula 1 partner McLaren to showcase their collective experience in the development, construction and production of high-performance sports cars. This combination of knowledge and expertise is evident not only in the host of pioneering developments, impressive performance figures and superior driving characteristics of the SLR, but also in the extremely high levels of safety and practicality which it offers. These attributes come together to form the basis for an automobile with a very special charisma - an impressive synthesis of Mercedes tradition and innovation in every respect.

    Just like its legendary predecessor of 1955, this SLR incorporates new technological developments which are ahead of their time. For evidence, simply take a glance under the bonnet at the Mercedes-AMG V8 powerplant. With its 5.5-litre displacement and screw-type compressor, the engine develops a peak output of 460 kW/626 hp and delivers its maximum torque of 780 Newtonmetres from 3250 rpm - a figure which remains constant across a broad engine speed range of up to 5000 rpm. With this kind of power under the bonnet, the Mercedes-Benz SLR McLaren delivers performance figures which are among the best in its class: this high-performance sports car takes just 3.8 seconds to sprint from 0 to 100 km/h, it passes the 200 km/h mark after 10.6 seconds, and from a standing start it takes just 28.8 seconds to reach 300 km/h. The two-seater has a top speed of 207 mph (334 km/h).

    In the interests of optimum weight distribution, optimum dynamic handling and high stability on braking, the Mercedes-Benz SLR McLaren has a front mid-engined design. The V8 powerplant is mounted on a robust aluminium frame and has a low installation position. Water-type charge-air cooling, three valves per cylinder, dry sump lubrication and four metal catalytic converters are further special features of this powerful engine - an engine which already meets stringent EU 4 exhaust gas regulations which are not due to come into force until 2005.

    Engine & Transmission

    When developing the powerplant, the AMG engineers applied both the expertise they had acquired during their three-decade involvement in motorsport and the stringent standards of the Mercedes-Benz brand. After an extensive concept phase, they decided in favour of an 8-cylinder design with a 5.5-litre displacement, a cylinder angle of 90 degrees, a screw-type compressor and a crankshaft supported by five bearings.

    The result is impressive: from a mere 1500 rpm, the SLR powerplant delivers torque of over 600 Newtonmetres, rising to 700 Newtonmetres at 2000 rpm. The maximum of 780 Newtonmetres is available from 3250 rpm and remains constant in a broad engine speed range up to 5000 rpm As the figures indicate, the new SLR is endowed with what is currently one of the most powerful engines to be found in a series-produced roadgoing sports car.

    The design of the powerplant's oil cooling system is also based on experience gathered in the world of motor racing: a sophisticated dry sump lubrication system with an oil capacity of around eleven litres, combined with a five-stage oil suction pump and a two-stage oil pressure pump, ensures reliable lubrication under all on-road conditions. An important side effect of this technology is that, because of the dry sump lubrication, usually only used in motor racing vehicles, the engine is less tall and can therefore be installed at a lower level, allowing a low centre of gravity which benefits dynamic handling.

    Following the usual practice at Mercedes-AMG, each SLR engine is manufactured by hand. In order to achieve the highest quality, the principle of 'one man, one engine' is applied. This means that each powerplant is the responsibility of one AMG engineer, who carries out the entire engine assembly process - from installing the crankshaft in the engine block and assembling the camshafts and the compressor to cabling.

    Power from screw-type compressor

    To ensure good cylinder charging, the engine has a mechanical compressor with two screw-type aluminium rotors which, in the interests of low friction losses, are Teflon-coated. The charger is so compact that the engine specialists were able to install it between the two cylinder banks of the V8 powerplant. Despite the space-saving design, its innovative technology allows a significantly higher charge pressure than conventional mechanical chargers because the two rotors achieve a top speed of around 23,000 revs per minute, forcing air into the air inlet of the 5.5-litre powerplant at a maximum pressure of 0.9 bar. This means that they compress around 1850 kilograms of air into the eight combustion chambers per hour - which is up to 30 percent more than the figure achieved by rival charging systems.

    In order to ensure the greatest possible efficiency, the AMG engineers created an intelligent engine management system which regulates the operation of the screw-type compressor according to the engine speed and load. This means that the charger is only active when it is needed. Nevertheless, the system ensures that the maximum output is available as soon as the driver calls it up by stepping on the accelerator. When this occurs, the electronics of the engine management system trigger an electromagnetic coupling which immediately activates the compressor, which is powered by a separate poly-V-belt. Because the charger delivers its output in fractions of a second, even the most perceptive driver will not notice the phases without charger support. The charger system's air recirculation flap, opened under partial load, helps reduce fuel consumption.

    The first automated production of carbon fibre composite components

    To date, carbon fibre composite components for racing cars and for the aeronautical and space industries have been manufactured by hand - a time-consuming process. The challenge for the Mercedes engineers was to use their experience in this field to develop automated methods of series production. To do this they divided the manufacturing process into separate stages, manufacturing of the preform being followed by impregnation with resin and hardening.

    In order to allow extensive automation of the preform manufacturing process (the preform also being made from carbon fibre), the materials experts at Mercedes-Benz cast a glance at the work of their colleagues in the textile industry and adapted traditional manufacturing methods used in this sector, such as sewing, knitting, weaving and braiding, for the processing of high-performance carbon fibres.

    In a further manufacturing process, a computer-controlled tufting machine joins the inner web to the braid of the longitudinal member. The braid core is removed and the preform of the longitudinal member is cut to the correct size. The preform is then injected with resin. Several, now patented, solutions had to be developed and tested in order to ensure short cycle times and high repeat precision for this manufacturing process - crucial qualities in series production. The manufacture of the complex fibre struc-ture of the longitudinal members using a braiding machine requires a cycle time of just twelve minutes, which illustrates the unit potential that this innovative manufacturing technology offers.

    Ceramic brake discs for top performance

    Mercedes-Benz has optimised the outstanding properties of the Sensotronic Brake Control system in the new SLR with a braking system which also marks a technological high-point in a high-performance car: at the front and rear axle of the cutting-edge swing-wing door vehicle, brake discs made from fibre-reinforced ceramic ensure reliable deceleration. Their development is based on the one hand on the results of DaimlerChrysler materials research and on the other on Mercedes-AMG's experience of high-tech brakes in touring cars and GT sport. Here Mercedes-Benz yet again underlines its leading role in the development of groundbreaking technologies for car production.

    In manufacturing the brake discs, the carbon fibre, powdered carbon and resin are pressed into shape at high pressure and baked with a silicon infiltration at temperatures of around 1500 Celsius to form the ceramic. The advantages of this composite material are considerable: in addition to being characterised by an extremely sensitive response, the Mercedes-Benz SLR McLaren's brake discs demonstrate a high temperature-resistance of up to 1000 Celsius, which produces a fade-resistance when braking at high speed never before achieved in a series-produced car. The result is brake power of up to 2000 hp.

    Adaptable rear spoiler as airbrake

    The outstanding performance of the SLR is also aided by the adaptable spoiler - known as the airbrake - in the boot lid. If the driver steps heavily on the brake pedal, the rear spoiler rises to an angle of 65 degrees, boosting the braking effect by producing greater aerodynamic drag. When braking from high speeds, it lends the SLR outstanding stability.

    In most situations the electronics control the airbrake as required. However, the driver can also opt to take control of the adjustments using the switch in the centre console, manually
    Attached Images Attached Images
    Last edited by McLareN; 10-13-2004 at 04:12 AM.

Thread Information

Users Browsing this Thread

There are currently 2 users browsing this thread. (0 members and 2 guests)

Similar Threads

  1. Really useful performance listings...
    By Egg Nog in forum Technical forums
    Replies: 59
    Last Post: 04-18-2021, 05:13 PM
  2. GT4 whole car list!!!!
    By Mustang in forum Gaming
    Replies: 247
    Last Post: 07-07-2010, 08:06 AM
  3. Mercedes McLaren P8
    By bum-man in forum General Automotive
    Replies: 24
    Last Post: 10-16-2008, 09:27 AM
  4. Ford Shelby GR-1 Concept
    By Matt in forum Matt's Hi-Res Hide-Out
    Replies: 34
    Last Post: 04-08-2006, 06:50 PM
  5. Replies: 31
    Last Post: 09-07-2004, 03:36 PM

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •